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INTRODUCTION

The elastic buckling of flat rectangular plates, subjected to edge thrusts, and various types of
edge restraint has been extensively studied and many numerical and analytical results for
buckling loads are available (see, for example, Bulson[6] and Timoshenko[7]). However, for the
particular case of a plate clamped on all four edges, the solution is rather more complicated,
and the results are almost all restricted to uniaxially loaded plates. The first paper on the topic
was by Taylor[1], who remarked on the complexity of the problem. He established a complete
plate buckling theory for such plates, but was able only to give a single solution for a square
plate with equal biaxial compression because of the complexity of the calculations. Subsequent
researchers have solved more restricted problems, usually taking uniaxial loading only. Results
have been obtained using various methods by Levy[2], Wittrick{3], Stowell[4] and El-
Bayoumy({5]. Here we complete Taylor’s theory, giving some terms which he omitted in the
original paper, and applying a computer program to the numerical solution of his equations for a
large range of plate parameters. In addition we consider the possibility of antisymmetrical
modes of buckling which Taylor omitted for simplicity, and we show that by reversing the order
in which the boundary conditions are applied, very similar equations are obtained to those for
the symmetrical case. A complete set of formulae for researchers wishing to duplicate the
results and a comprehensive table and graph of buckling loads are given.

Taylor developed a method to find solutions of the governing differential equation which
satisfy zero displacement at the edges first. An infinite number of these can then be combined
together in such a way that the remaining “clamped edge” condition (i.e. zero slope at the
edges) is also satisfied, provided a certain relationship exists between the shape and size of the
plate and the thrusts. Taylor considered only the displacements which are symmetrical with
respect to both axes. His method can deal with a general range of loading cases and plate
geometries. A computer program is used to perform the tedious calculations for various aspect
ratios and load ratios.

THEORY

For convenience we now briefly recapitulate Taylor’s theory.
The governing differential equation for elastic displacement w of a plane sheet subjected to
stresses P, and P; parallel to rectangular axes £, 1, is
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where D =[Eh*/12(1- ¢?)]. Figure 1 shows the rectangular sheet loaded along its edges. h is
plate thickness and o Poisson’s ratio.

Writing ¢ = 2ax/w, n = 2by/w, the rectangle whose sides are £ = +a, n = £ b, is transformed
into a square whose sides are x = £ 7/2, y = + /2 and (1) becomes
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The problem is to find a solution of (2), other than w = 0, which satisfies the condition w =0 at
x==m2 and y=+mx/2, and also the conditions dw/ax =0 at x =+x/2 and dw/dy =0 at
y = +m/2. The method adopted is to find first solutions of the differential equation (2) which
satisfy two of the four boundary conditions mentioned above. It is then shown that an infinite
number of these can be combined together in such a way that the remaining two boundary
conditions are also satisfied, provided a certain relationship exists between the size and shape
of the plate and the thrusts P, and P,.

Let us consider the symmetrical modes of buckling in which displacements are symmetrical
with respect to both axes, so that x and y occur in w only as even functions.

The function e’ cos nx satisfies the condition w =0 at x = =72, provided n is an odd
integer and it also satisfies (2), provided
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By a suitable combination of the four terms of type e* cos nx, an even function is obtained
which satisfies w =0 at y = + /2. These combinations will take four different forms, according
to whether the roots of (3) are real, imaginary or complex.

Type 1
If the roots of (3), regarded as a quadratic in «, are positive, the appropriate form is as
follows calling them a,?, 8,

a,m

2 ) COS nx.

W= (cosh a,y cosh @5_77_ cosh B,y cosh

Type 2
If the two roots of (3), regarded as a quadratic in a® are positive and negative, let them be
—a,?, Ba2. The required term is

w= (cosh B ’;T COS a,y — COS 9"2—77 cosh B,,y) cos nx.

Type 3
If the four roots are pure imaginaries * a,i, * 8,i the form is

ks a,mT
w= (cos @,y COS % - €0S B,y COS "T) COS nx.
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Fig. 1. Plate geometry.
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Type 4
If the roots of (3) are complex they must be of the form + a, + B,i and the appropriate form
for wis

w= (cosh @,y €os B,y sinh a';r sin B ’éﬂ - sin B,y sinh a,y cosh g’é—v—cos %) COS nx.

In the work which follows, only terms of type | will be referred to assuming that in applying
the results terms of other types are substituted where necessary.

In order that a series of Type 1 may be capable of representing all possible values of w
inside a square consistent with w =0 at its edges, it must also be capable of representing
arbitrary symmetrical distributions of dw/dy along y = = /2 and of dw/dx along x = + a2,

The single series w = E An (cosh a,y cosh B ';T —cosh B,y cosh a;n-
n odd

) cos nx

is capable of representing any assigned distribution of dw/dy along y = = /2. A, are unknown
coeflicients.
Similarly the series

S,
2

~ cosh 8,x cosh y;:r) cos ny

w= 2, B,.(cosh Yax cosh
nodd

is capable of representing any assigned distribution of dw/ox along x = +#/2, and if *y,, *3,
are the roots of the biquadratic
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each term of the series satisfies (2).
The two single series can be combined to form a double series

w=2 A, (cosh a,y cosh B ’éw ~cosh B,y cosh 29571) cos nx
+B, (cosh Yo Cosh 6’; — cosh 8,x cosh 1’%—75) cos ny. (5

The determination of the actual values of the As and Bs in any given case would necessitate
the solution of an infinite series of linear equations. If the two remaining boundary conditions
{of dw/ay) are enforced, the solution of this series of equations would in general yield the result
that all the As and Bs are zero, except if a certain relationship exists between the dimensions
of the sheet and P, and P,, namely that obtained by eliminating all the As and Bs from the
system of linear equations.

To carry out the operations indicated above it is convenient to expand each term of the A
and B series in (5) in a cosine series of even multiples of y. The coefficient of cos sy in the
series so obtained is then equated to zero for each value (even) of s in order that aw/dx = 0 may
be satisfied at all parts of the edges x = + «/2.

The necessary cosine series valid between y = + 7/2 are

4a . I cos2y cos4

coshay = Tt sin (52 SF 5+ S8 G+ ) 0
4a . I  cos2y cosd

cosay = s (7 PR SRR +) ®)

and if terms of Type 4 occur the expansions of cosh By cos ay and sin ay sinh By are also
needed. (For their expansions, see Ref. {8].)
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Inserting expansions of this type for cos ny, cos a,y and cosh 8,y in the right hand side of
(5) it is found that the condition dw/dx = 0 at x = * 7/2 is satisfied if for every (even) value of s

(12 > (= D" "n(Aay, ~ bysB,) =0

n odd

9

where a,;, b, take different forms according to whether the corresponding term is of Type 1, 2,

3 or 4. Their derivations are found in (8), while they are listed here as follows:

Type 1
. o Bam AT
B a, sin ‘B,‘ sinh > >
Qns = an + s2 B"s + s2
. YnTT S, . L O YT
- Y» Sinh ) 5 n 5 s 3
ns ”2_ sz
Type 2
. QT ™ 1 BT a,m
] =a,,51 7 2 nﬂ,,smh > cos 5
ns an: — s2 Bn2+ SZ
YT YT
b - (”" sin~y 2 ”®72 )
ns nZ . sZ .
Type 3
QT Bum . Bam T
. =a,.Sl > 2 ~[3,.31 > 2
ns anz_sz ﬂ"2_52
a YT S, . O Ya Tl
ARG Theetl Wbl Tl
ns n2 . s2 .
Type 4
. [0 7% Bn ﬁnﬂ
. 18 Bn sinh 5 COs +(Bs
"2 2 a,+(B, — s)?
ay, si g——+(p},l +5)cosh 2% B"”
+ 2 2 2 |_ cosh T cos Bum
a,l+ (B, + 5P 2 2
cosh ’é sin B"”a,. —(Bn— ) sinh%—ﬂcos%—"
an2 - (Bn _T)f
ay a,;r i 3’; —(Bn+s) sinh%cos B"T" }
* anz + (Bn + s)z
YaT . . YaT I W
~{ 8, cosh sinh + y, COs —5—sin
_ 2 2 2 2
bns - 2. 2

n-—s

Permutating x and y the condition aw/dy =0 at y = = /2 leads to

(123 (= 1) "2 (¢, B, — dueAn) = 0.

(10
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For instance, if a,, 8, and also y,, 8, are each derived from terms of Type 1

¥ cosh 6"7” sinh 7’; 8, cosh 7’; sinh 8’;
Cns = 7, 3 - T, 2
s O ts

BT h T o oy BT M)
(az,l cosh 7 sinh 5 B, sinh 2 cosh 5

n’—s?

dn; =

For Type 2, 3 and 4, the expressions for ¢, d.. can easily be obtained by permutating the
corresponding d,;, bys.
Eliminating the As and Bs between (9) and (10), we obtain the infinite determinant equation

ain b ax by

do cio dyp cn - -

aiz by an by - =0 (1
do ¢ dn cn - -

When a, b are fixed, the only variables remaining in A are P, and P,, so that A =0 is a critical
equation determining the special values of P, and P,.

The same method could be applied to get anti-symmetrical modes whose displacements are
symmetrical with respect to one axis and anti-symmetrical with respect to the other. Let us
consider the case where anti-symmetry is in the x direction (the case when a > b).

The function e*” sin nx satisfies the condition dw/dy =0 at x = £#/2 if n is odd and it also
satisfies (2), provided (3) holds. It is worth noting that the condition w =0 at x = + /2 is not
applied first since mathematical difficulty arises from the ‘even n’ in e* sin nx.

By combining the four terms of type e¢* sin nx, an odd function is obtained which satisfies
w =0 at y = = 7/2. Again the roots of (3) can fall into four categories with their corresponding
expressions for w. The four expressions are the same as those derived above for symmetrical
modes, except that the term cos nx is replaced by sin nx.

Consider Type 1 as an example.

The single series is w = 2, A, (cosh any cosh é’éz - cosh B,y cosh a’;r) sin nx. (12)

LU

2

YnT

2

Similarly the series w = 2 B,.<6,. cosh sinh y,x — vy, cosh sinh 6,,x> cosny (13)

is obtained which also satisfies the two boundary conditions and (2) if (4) holds.
Consider the double series

Z An (cosh a,y cosh ﬂ;‘" —cosh B,y cosh %) sin nx
+ B, ( 8. cosh 8’; sinh y,x — y, cosh 7':';7 sinh 6,,x) cos ny. (14)

The two boundary conditions left unsatisfied are dw/dy =0at y =+ 7/2 and w =0 at x = + 7/2.
Application of them leads to an infinite number of linear equations which will give trivial
solutions unless As and Bs are eliminated. The process is similar to that explained above,
except that sine series are needed for the expansions when aw/dy =0 at y = + /2 is applied.
The necessary sine series valid between x = + /2 are

. _i.a_‘r[( -2 4 6 )
sinax =—sin S~ ——mt o p - at (15)
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. 4 . . am 2 4 6
smhax—;sth(az+22—02+42+az+62_...) (16)

and if Terms of Type 4 occur the expansions of cosh ax sinBx and sinh ax cos Bx are also
needed (see Ref. [8] for their expansions). Inserting expansions of this type for sin nx, cosh y,x
and cosh B,x in the right hand side of (14), it is found that the condition dw/dy =0 at v = = 7/2
is satisfied if for even value of s (s # 0)

—f;s(— DS (= D nBybas — Anttns] =0 (1n

where a,,, b, take different forms according to whether Type 1, 2, 3 or 4 occurs. Their
derivations are again found in Ref. (8] while they are listed as follows:

Type 1
Bam . . anT a,m . B
a, cosh 2 sinh 5 B, cosh > sinh 5
Qns = ni—s?
Yol ., OuT O . o YaT
¥a cOsh sinh 8, cosh sinh 5~
b = 2 2 2 2
ns 8+ 2 Yol + 52

w =0 at x = 7/2 give similar equations in ¢, d.s for every even value of s (including s = 0) as
1 S 0" (Ardy, — nByc] =0, (18)

The four pairs of expression for c,,. d,, are:

Type 1
¥n cosh Y7 Ginh Sum _ 8, cosh o sinh 127
" 2 2 " 2 2
Cns = 2 2
n—s
a, cosh Bum sinh 227 B, sinh Bum cosh 227
d. = 2 2 2 2
ns a,,f+s2 B"z+s2
Type 2
YaTl . OaT O . YnT
) Yn €08 5 sinh 2 8, cosh 5 sin5
Cns = e
a, cosh B sinZ2% B, cos 27 sinh Bum
d. = 2 2 2 2
ns — anZ*sl B’I2+ sZ
Type 3
Yo . OuT OuT . YaT
_ Ya €OS 5= sin 5 8, COS 5 sin—
Cns = ni_s?
a, COs Bum sin 227 Bn cos &7 sin Bum
d. = 22 i 2 2 2 '

Ay —§ ﬁnz_sz
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Type 4
2(7 cos L sin o _ 8, cosh 2% sinh 7"—")
o = " 2 2 " 2 2
ns n? — s2
T . Bam R 2 Bt
N T G Bur a, cosh 5 sin ) (B, —~ s) sinh 7 cos 7
" 2 2 an2 - (Bn - 5)2
T . B . 0T Bam
a, cosh 5 sin 5 — (B + s)sinh 5 cos—j—
* al+ (Ba+ 5P

QT B
) Ccos 2

at+(Bn—5)’

anm m m . mw
" cosB'l +(B,,+s)cosh&'—sm3" J

+ (Bn —s)cosh%isinﬂ—;’—r

a, sinh
- cosh a,;r cos %[

a, sinh

2 2 2 2

+
an’+ (B +5)

Eliminating the As and Bs between (17) and (18), the infinite determinant is

ap b an by

dio cio diw bn - -

ay by axn bu - | =0 19)
dip ¢ dnn ¢y - -

The solution expressed by (19) is merely formal. To find out whether it can be used to
determine actual values for the buckling loads, we must examine its convergence. For this
purpose we may form a series of finite determinants Ay, A,, ..., A, by taking 2,4,...,2N rows
and columns starting at the left hand top corner of A. If it is found that any root of Ay =0
converges to a definite limit as N increases, this root represents a possible condition for which
an elastic displacement can exist in neutral equilibrium.

RESULTS

In order to get the buckling coefficient for various loading cases, a computer program was
developed which enables the iterations for A = 0 to be done. Results are presented to cover the
range of aspect ratios from 1.0 to 4.0 for a range of loading cases from the uniaxial to uniform
biaxial loadings. The results are presented in the table below.

Figure 2 illustrates the results above. It is clear from the figure that there are transitions
from one mode to the next as the aspect ratio gets higher. Furthermore, the transition from one
mode to the next shifts to higher aspect ratios when P, increases. Also, as the aspect ratio
approaches 4.0, the buckling coefficient approaches a horizontal asymptote.

DISCUSSION

The family of curves, shown in Fig. 2, give reasonable values for buckling load for various
load ratios, which range from uniaxial to uniform biaxial loading. As expected, varying P, from
0.0 to 1.0 while P, is constant at 1.0, causes the value of the load at which buckling occurs to
decrease. The transition from one mode of buckling to the next, which shifts to higher aspect ratios
when P, increases, is clearly illustrated. At all load ratios, the buckling coefficient approaches a
horizontal asymptote as the aspect ratio increases (beyond or near 4.0). The results for uniaxial
loading (P; = 1, P, = 0) agree well with those of other investigators. Comparisons are shown in
Figs. 3, 5 and 6. As the other results have been scaled from published figures too much weight
should not be put on any differences.



Table |. Buckling coefficient, K = 4P,b’/D? as a function of load and aspect ratios K

Aspect Factor on P, and P, for buckling, K
ratio P,=0 P=01 Py=02 P,=03 P=05 P=07 P=10

1 100738 93147 86382 80376 70300 6.22% 53035
1.1 99886  9.1533 848 73438 66548 S5BI4 48658
1.2 95919 91177 B30 TS5999 64262 55304 48684 o
1.3 90083 86638  B.2982  7.5460  6.2981 5.3631 4.3637
14 86123 82170 78885 75350 62304 52505  4.2210
1.5 £.3566 7.9460 7.5675 7.2181 6.2013 5.1807 4.1213
1.6 82050 77588 786 69725 41923 513 40507
1.7 81288  7.64%1 T8 63031 41012 51167 4.0008 o
18 81016 75934 I225 66921 59471 51062 3.9656
1.9 80417 7575 1015 66240 58369 51021 3.9408
b 718674  1.5201 T.0629 65875 57607 50916 319234
21 7417 134 0333 65T 57096 50130 39113
22 765 72736 69146 65672 546784 49546 39035 A
2.3 76064 72027 68266 6475 56610 49125 18983
24 75812 71389 67650  6.3998 56529 48825 3.8950
2.5 75731 71362 67257 63447 56497 48622 18932

p,=0
py=01

p?=lJ 2

ff

S59LEag "d PUE ONOM, W “d

26 TS 11773 67034 63074 56055 484927 1m2 e I p,=03
27 74TM 120 66933 62847 55597 48411 38919

28 74199 10576 66904 62730 55252 48371 3.8898

29 7T 0094 66548 62681 55005 4.8346 3874 p,c05
30 73608 69M45 66102 6.2653 54835 48229 1864 ?

0 7M. B9SIE 6STHD 624 S4ATM 4MT8 38506 s |-

320 TMS0 69383 65538 61923 54681 4TT% 38431 07
33 7.0 69328 65405 61684 54661 47629 18IM P2 =
34 2674 69304 65312 6ASIS 54653 475 3E3M

335 7.2615 6.8979 6.5271 6.1413 5.4413 4.7447 18304

36 745 68724 65186 60352 54223 4TWR 1824 ¢ { 10
37 7.2343 6.8542 6.4935 6.1324 54677 4.7370 3n Pz =
38 12299 68424 64740 6125 53968 47357 18265 I R \ |

39 1282 68355 64602 61052 53891 47351 18262 | 4 3 :

40 72084 68327 64513 6.0898 5.3842 4.7301 18261 az,

Fig. 2 Buckimg coefficient. K. v< aspect ratia for a range of load combimations.
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Fig. 3. Buckling coefficient, K, for uniaxial loading comparison with Levy, Ref. [2].

Fig. 4. Buckling coefficient, K, for uniaxial loading comparison with Wittrick, Ref. [3].
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Fig. 5. Buckling coefficient, K, for uniaxial loading comparison with El-Bayoumy, Ref. [5].

Fig. 6. Buckiing coefficient, K, for biaxial loading comparison with El-Bayoumy, Ref. [5].
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In conclusion, this method gives reliable results and is useful because the computer program

developed fits into a mini computer and does not require a great deal of storage and computer
time.

Completely clamped plates occur relatively rarely in engineering structures. However, when
they do occur, for example as thin diaphragms in more rigid structures their buckling behaviour
may be important. Also a comparison of the clamped and simply supported buckling loads for a
plate can give the designer an indication of the benefit he is likely to gain by increasing edge
fixity.
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