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INTRODUCTION

The elastic buckling of flat rectangular plates, subjected to edge thrusts, and various types of
edge restraint has been extensively studied and many numerical and analytical results for
buckling loads are available (see, for example, Bulson [6] and Timoshenko[7]). However, for the
particular case of a plate clamped on all four edges, the solution is rather more complicated,
and the results are almost all restricted to uniaxially loaded plates. The first paper on the topic
was by Taylor[l], who remarked on the complexity of the problem. He established a complete
plate buckling theory for such plates, but was able only to give a single solution for a square
plate with equal biaxial compression because of the complexity of the calculations. Subsequent
researchers have solved more restricted problems, usually taking uniaxial loading only. Results
have been obtained using various methods by Levy[2], Wittrick[3], Stowell [4] and El
Bayoumy[5]. Here we complete Taylor's theory, giving some terms which he omitted in the
original paper, and applying a computer program to the numerical solution of his equations for a
large range of plate parameters. In addition we consider the possibility of antisymmetrical
modes of buckling which Taylor omitted for simplicity, and we show that by reversing the order
in which the boundary conditions are applied, very similar equations are obtained to those for
the symmetrical case. A complete set of formulae for researchers wishing to duplicate the
results and a comprehensive table and graph of buckling loads are given.

Taylor developed a method to find solutions of the governing differential equation which
satisfy zero displacemer.t at the edges first. An infinite number of these can then be combined
together in such a way that the remaining "clamped edge" condition (i.e. zero slope at the
edges) is also satisfied, provided a certain relationship exists between the shape and size of the
plate and the thrusts. Taylor considered only the displacements which are symmetrical with
respect to both axes. His method can deal with a general range of loading cases and plate
geometries. A computer program is used to perform the tedious calculations for various aspect
ratios and load ratios.

THEORY

For convenience we now briefly recapitulate Taylor's theory.
The governing differential equation for elastic displacement w of a plane sheet subjected to

stresses PI and P2 parallel to rectangular axes ~, 7/, is

(l)

where D = [Eh 2/12(l- (12)]. Figure I shows the rectangular sheet loaded along its edges. h is
plate thickness and (1 Poisson's ratio.

Writing ~ = 2ax/1T, 7/ = 2by/7T, the rectangle whose sides are ~ = ± a, 7/ = ± b, is transformed
into a square whose sides are x = ± 7T/2, Y= ± 7T/2 and (I) becomes

I a'w 2 a'w I a'w 4Pta
2

( I a2w) 4P2b2
( I a2w)

a' ax4 + a2b2 ax 2al + b4 ay' + D7r2 a4 ax 2 + D7r2 b4 al = O.

tResearch student.
tLecturer.

(2)

SS Vol 15. No 6-8
457



458 P. M. WONG and P. BETfESS

The problem is to find a solution of (2), other than w = 0, which satisfies the condition w = 0 at
x = ± 7T/2 and y = ± 7T/2, and also the conditions awlax = 0 at x = ± 7T/2 and awlay = 0 at
y = ± 7T/2. The method adopted is to find first solutions of the differential equation (2) which
satisfy two of the four boundary conditions mentioned above. It is then shown that an infinite
number of these can be combined together in such a way that the remaining two boundary
conditions are also satisfied, provided a certain relationship exists between the size and shape
of the plate and the thrusts PI and P2•

Let us consider the symmetrical modes of buckling in which displacements are symmetrical
with respect to both axes, so that x and y occur in w only as even functions.

The function eay cos nx satisfies the condition w =0 at x = ± 7T/2, provided n is an odd
integer and it also satisfies (2), provided

(3)

By a suitable combination of the four terms of type eay cos nx, an even function is obtained
which satisfies w = 0 at Y= ± 7T/2. These combinations will take four different forms, according
to whether the roots of (3) are real, imaginary or complex.

Type I
If the roots of (3), regarded as a quadratic in a 2

, are positive, the appropriate form is as
follows calling them a/, ~/

w = (COSh anY cosh f3nt - cosh ~nY cosh a;7T) cos nx.

Type 2
If the two roots of (3), regarded as a quadratic in a 2 are positive and negative, let them be

-a/, ~n2. The required term is

w = (COSh ~;7T cos anY - cos a;7T cosh ~nY ) cos nx.

Type 3
If the four roots are pure imaginaries ± ani, ± ~ni the form is

( /}.!!!!.. an7T)w = cos anY cos 2 - cos ~nY cos -2- cos nx.

Fig. I. Plate geometry.
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Type 4
If the roots of (3) are complex they must be of the form ± an ± {3ni and the appropriate form

for w is

( h . h an7T . (3n7T . a . h h an7T f3n7T )w = cos anY cos {3nY sm -2- sm -2- - sm ,.,nY SID anY cos 2 cos 2 cos nx.

In the work which follows, only terms of type I will be referred to assuming that in applying
the results terms of other types are substituted where necessary.

In order that a series of Type 1 may be capable of representing all possible values of w

inside a square consistent with w =0 at its edges, it must also be capable of representing
arbitrary symmetrical distributions of awlay along Y =± 7T/2 and of awlax along x =± 7T/2.

The single series w = 2: An (cosh anY cosh {3nt - cosh (3nY cosh a
i
7T) cos nx

n odd

is capable of representing any assigned distribution of awlay along y = ± 7T/2. An are unknown
coefficients.

Similarly the series

w = 2: Bn( cosh 'YnX cosh Sn.t - cosh Snx cosh 'Yi
7T

) cos ny
n odd

is capable of representing any assigned distribtttion of awlax along x = ± 7T/2, and if ± 'Yn, ± 5n
are the roots of the biquadratic

each term of the series satisfies (2).
The two single series can be combined to form a double series

w = 2: An ( cosh anY cosh {3i7T - cosh (3nY cosh an,t) cos nx

+Bn( cosh 'YnX cosh 5nt - cosh 8nx cosh 'Yi
7T

) cos ny.

(4)

(5)

The determination of the actual values of the As and Bs in any given case would necessitate
the solution of an infinite series of linear equations. If the two remaining boundary conditions
(of aw/ay) are enforced, the solution of this series of equations would in general yield the result
that all the As and Bs are zero, except if a certain relationship exists between the dimensions
of the sheet and PI and P2, namely that obtained by eliminating all the As and Bs from the
system of linear equations.

To carry out the operations indicated above it is convenient to expand each term of the A
and B series in (5) in a cosine series of even multiples of y. The coefficient of cos sy in the
series so obtained is then equated to zero for each value (even) of s in order that aw/ax = 0 may
be satisfied at all parts of the edges x = ± 7T/2.

The necessary cosine series valid between y = ± 7T/2 are

4a. a7T( 1 c~s2~ cos4y )
coshay=-:;-slDhT 2t?- a +2 + a 2+42+'"

40: . a7T( 1 cos2y cos4y )cosay=-sm- ~-~+~_...
7T 2 2a a - 2 a - 4

(7)

(8)

and if terms of Type 4 occur the expansions of cosh {3y cos ay and sin ay sinh {3y are also
needed. (For their expansions, see Ref. [8].)
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Inserting expansions of this type for cos ny, cos anY and cosh /3nY in the right hand side of
(5) it is found that the condition aw/ax = 0 at x = ± 11'/2 is satisfied if for every (even) value of s

(9)

where an.. bns take different forms according to whether the corresponding term is of Type I, 2,
3 or 4. Their derivations are found in (8), while they are listed here as follows:

Type I

, h an1T h /3n 1T , h /3n 1T h an1Tan sm -2- cos -2- /3n sm -2- cos -2-

ans = a/ + s2 - /3: + s2

Type 2

ans =
~ Sl'n an1T cosh /3n 1T /3 sl'nh /3n 1T cos an1T
~n -2- -2- n 2 2

a:-s2 /3n 2+ S2

Type 3

Type 4

~ sl'n an1T cos /3n 1T /3n sl'n /3n
2

1T cos a n21T
~n -2- -2-

ans = a/-s 2 /3/-S2

. Yn1T 6.11' ~ . 6n1T Yn1T
-Yn smTcosT+on smTcos-2-

bns = 2 2n - s

{ [

, h an1T f3n 1T (13 h an1T . /3n 1T_1 . an1T. f3n1T sm -2-cosTa.+ n-S)COS T sm -2-
ans - 2 smh 2 sm 2 a/ + (f3n _ S)2

. h an1T /3n 1T ( h an1T . f3 n1TJan sm TCOS 2 + f3n +s)cos -2- sm -2- a
n

1T f3n 1T
+ 2 (13 )2 - cosh -2- cos -2-an + n+ S

~
h an1T . f3n 1T ( . h an1T /3n 1Tcos -2- sm -2-an - f3n - s) sm -2- cos -2-

an2 - (f3n - S )2

h an1T , f3n 1T . h an1T f3 n1Tj )+ an cos -2- sm -2- - (f3n + s) sm -2- cos -2-

a/ + (f3n + S )2

(
<> h Yn 1T . h Yn 1T {jn 1T . 6n1T)- On cos T sm T+ Yn cosTsmT

bns = n2-s2

Permutating x and y the condition awlay = 0 at y = ± 11'/2 leads to

(10)
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For instance, if am f3n and also 'Ym 8n are each derived from terms of Type 1

461

h 5n1T . h 'Yn 1T
'Yn cos -2- SIO 2

Cns =
'Y/ + S2

~ h 'Yn 1T . h 5n1T
VnCOS 2 sm 2

5/+s 2

( h f3n1T . h an1T . h f3n 1T h an1T)an cos -2- sm -2- - f3n sm -2- cos -2-
dn, = 2 2 .n - s

For Type 2, 3 and 4, the expressions for CnS' dns can easily be obtained by permutating the
corresponding an" bns.

Eliminating the As and Bs between (9) and (10), we obtain the infinite determinant equation

aJO b JO a30 b30

d JO CJO d30 C30

al2 b12 a32 b32 =0. (11)
d12 CI2 d32 C32

When a, b are fixed, the only variables remaining in A are PI and P2, so that A= 0 is a critical
equation determining the special values of PI and P2•

The same method could be applied to get anti-symmetrical modes whose displacements are
symmetrical with respect to one axis and anti-symmetrical with respect to the other. Let us
consider the case where anti-symmetry is in the x direction (the case when a > b).

The function eay sin nx satisfies the condition awlay = 0 at x = ± 1T/2 if n is odd and it also
satisfies (2), provided (3) holds. It is worth noting that the condition w = 0 at x = ± 1T/2 is not
applied first since mathematical difficulty arises from the 'even n' in eay sin nx.

By combining the four terms of type eay sin nx, an odd function is obtained which satisfies
w = 0 at Y = ± 1T12. Again the roots of (3) can fall into four categories with their corresponding
expressions for w. The four expressions are the same as those derived above for symmetrical
modes, except that the term cos nx is replaced by sin nx.

Consider Type 1 as an example.

The single series is w = L An ( cosh anY cosh f3nt - cosh f3nY cosh a;1T) sin nx. (12)

Similarly the series w = L Bn( 8n cosh 5;1T sinh 'YnX - 'Y. cosh 'Yn,t sinh 5nX) cos ny (13)

is obtained which also satisfies the two boundary conditions and (2) if (4) holds.
Consider the double series

L An ( cosh anY cosh f3;1T - cosh f3nY cosh a;1T) sin nx

+ Bn( 5. cosh 8;1T sinh 'YnX - 'Yn cosh 'Y;1T sinh 8nX) cos ny. (14)

The two boundary conditions left unsatisfied are awlay = 0 at y = ± 1T/2 and w = 0 at x = ± 1T/2.
Application of them leads to an infinite number of linear equations which will give trivial
solutions unless As and Bs are eliminated. The process is similar to that explained above,
except that sine series are needed for the expansions when awlay = 0 at y = ± 1T/2 is applied.
The necessary sine series valid between x = ± 1T/2 are

. 4 . a1T ( - 2 4 6 )
smax=-sm-2 ~22+~42-~62+'"1T a- a- a- (15)
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(16)

and if Terms of Type 4 occur the expansions of cosh ax sin f3x and sinh aX cos f3x are also
needed (see Ref. [8J for their expansions). Inserting expansions of this type for sin nx, cosh 'YnX
and cosh f3nx in the right hand side of (14), it is found that the condition aw/ay = 0 at y = ± 71"/2
is satisfied if for even value of s (s ~ 0)

(17)

where an" bn, take different forms according to whether Type 1, 2, 3 or 4 occurs. Their
derivations are again found in Ref. [8J while they are listed as follows:

Type 1

h f3n71" . h an71" f3 h an71" . h f3n71"an cos -2- SID -2- - n cos -2- SID -2-
an, = n2 _ S2

w = 0 at x = 71"/2 give similar equations in Cn" dn, for every even value of s (including s =0) as

The four pairs of expression for Cn" dn, are:

Type 1

(18)

Type 2

h f3n71" . h an71"
an cos -2- SID -2-

dn, = :1 + 2an s

f3n sinh ¥ cosh ¥
f3n 2 + S2

Type 3

~7r . ~7r ~ ~71". ~7r
'Yn cos 2 SID 2 - Un cos -2- SID 2

Cn,= n2 -s 2

f3n 7r . an71" f3 an71"· f3n71"
an cos T SID -2- n cos -2- SID -2-

dn, = 2 2 f3 2 2an - S n - S
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Type 4

2(
l)"TT . 5.7T ~ h 'Y. 7T . h 'Y. 7T )'Y. cos -2- SIO 2 - u. cos 2 SIO 2

Cns = n2-s2

{
h a.7T . {3.7T ( ) . h a.7T {3.7T

{3
a. cos -2- SIO -2 - {3. - S SIO -2- cos -2-

d . h a.7T. .7T
.s = sIn -2- sm -2- a.2 - ({3. - sf

h ~7T· ~7T ({3 ) 'h~7T ~7T]a. cos -2- sm -2- - • + s sm -2- cos -2-
+ 2 2a. + ({3. + s)

{

. h a.7T {3.7T h a.7T . {32 7T
a.7T {3.7T a. sm -2- cos -2- + ({3. - s) cos -2- sm -2-

- cosh -2- cos 2 a/ + ({3. - s )2

. h a.7T {3.7T ({3 h a.7T . {3.7T}a. sm -2- cos -2-+ • +s) cos -2- SIO -2-

+ a/ + ({3. + S)2 •

Eliminating the As and Bs between (17) and (18), the infinite determinant is
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al2 b)2 a32 b 32

dlO CIO d30 b 30

a14 b 14 a34 b 34 =0. (19)

d12 C12 d32 C32

The solution expressed by (19) is merely formal. To find out whether it can be used to
determine actual values for the buckling loads, we must examine its convergence. For this
purpose we may form a series of finite determinants d), d2, ... ,d. by taking 2,4, ... ,2N rows
and columns starting at the left hand top corner of d. If it is found that any root of dN = 0
converges to a definite limit as N increases, this root represents a possible condition for which
an elastic displacement can exist in neutral equilibrium.

RESULTS

In order to get the buckling coefficient for various loading cases, a computer program was
developed which enables the iterations for d = 0 to be done. Results are presented to cover the
range of aspect ratios from 1.0 to 4.0 for a range of loading cases from the uniaxial to uniform
biaxial loadings. The results are presented in the table below.

Figure 2 illustrates the results above. It is clear from the figure that there are transitions
from one mode to the next as the aspect ratio gets higher. Furthermore, the transition from one
mode to the next shifts to higher aspect ratios when P2 increases. Also, as the aspect ratio
approaches 4.0, the buckling coefficient approaches a horizontal asymptote.

DISCUSSION

The family of curves, shown in Fig. 2, give reasonable values for buckling load for various
load ratios, which range from uniaxial to uniform biaxial loading. As expected, varying P2 from
0.0 to 1.0 while PI is constant at 1.0, causes the value of the load at which buckling occurs to
decrease. The transition from one mode of buckling to the next. which shifts to higher aspect ratios
when P2 increases, is clearly illustrated. At all load ratios, the buckling coefficient approaches a
horizontal asymptote as the aspect ratio increases (beyond or near 4.0). The results for uniaxial
loading (PI = I, P2 =0) agree well with those of other investigators. Comparisons are shown in
Figs. 3, 5 and 6. As the other results have been scaled from published figures too much weight
should not be put on any differences.
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Table I. Buckling coefficient, K = 4P jb2/D2 as a functIOn of load and aspect ratios K

Aspect Factor on P I and P2 for buckling, K
10ratio P1"'0 P,=O.I P,= 0.2 Pz = 0.3 Pz= 0.5 P,= 0.7 P,= 1.0

1 10.07l8 9.3147 8.6382 8.0376 7.0309 6.2296 5.3035
1.1 9.9886 9.1533 8.4048 7.3438 6.6548 5.8114 4.8658
1.2 9.5919 9.1177 8.3160 7J999 6.4262 5.5394 4.8684 ,
1.3 9.00Il3 8.6658 8.2982 7J46O 6.2981 5.3631 4.3637
1.4 8.6123 8.2370 7.8885 7.5350 6.2304 5.2505 4.2210
1.5 8.3566 7.9460 7.5675 7.21gt 6.2013 5.1807 4.1213
1.6 8.2050 7.7588 7.J486 6.972\ 6.1923 5.1394 4.0507
1.7 8.1288 7.6481 7.2068 6.8031 6.1012 5.1167 4.0008
1.8 8.1016 7.5934 7.1225 6.6921 5.9471 5.1062 3.9656

~
:"

1.9 8.0417 7.5735 7.0795 6.6240 5.8369 5.1021 3.'I4(JlI
2.0 7.8674 7.5201 7.0629 6.5875 5.7607 5.0916 3.9234 :: '"2.1 7.7417 7.J774 7.0333 6J721 5.7096 5.0130 3.9115 P2= Q oE
2.2 7.6574 7.1:136 6.9146 6J672 5.6784 4.9546 3.9035 1 0z

'--- P2=01 '"2.3 7.6064 7.2027 6.8266 6.4756 \.6610 4.9125 3.8983 ~

2.4 7.5812 7.1589 6.7650 6.3998 5.6529 4.8825 3.8950 5.
2.5 7.5731 7.1362 6.7257 6.3447 \.6497 4.8622 3.8932

Pz=02-
:"

2.6 7.5448 7.1273 6.7034 6.3074 5.6055 4.8492 3.8922
6 \ P2 =0:3 '"2.7 7.4734 7.1200 6.6933 6.2847 5J597 4.8411 3.8919 9

2.8 7.4199 7.0576 6.6904 6.2730 5.5252 4.8371 3.8898 I:l
~

2.9 7.3823 7.0094 6.6548 6.2681 5.500S 4.8346 3.8734 P2 ~O 5
3.0 7.J6OlI 6.9745 6.6102 6.2653 5.4835 4.8229 3.l1604
3.1 7.3494 6.9518 6.5770 6.2244 5.4734 4.7978 3.8506
3.2 7.3450 6.9383 6.5538 6.1923 5.4681 4.7779 3.8431 I \. ... Pz =073.3 7.3223 6.9328 6.5405 6.1684 5.4661 4.7629 3.8374
3.4 7.1874 6.9304 6.5312 6.1518 5.46.53 4.7524 3.8333
3.5 7.2615 6.8979 6.5271 6.14IJ 5.4413 4.7447 3.8304
3.6 7.2445 6.8724 6.5186 6.1352 5.4223 4.7398 3.8284

I
Pz =1 03.7 7.2343 6.8542 6.4935 6.1324 5.4077 4.7370 3.8m

3.8 7.2299 6.8424 6.4740 6.lm 5.3968 4.7l57 3.8265 L I
3.9 7.2282 6.8355 6.4602 6.1052 5.3891 4.7353 3.8262
4.0 7.2084 6.8327 6.4m 6.0898 \.3842 4.7301 3.8261 alb

FIg. 2 BudJmg coefficient. K. V~ aspect melO for a rang~ 0,)( load combinations.
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Fig. 3. Buckling coefficient, K, for uniaxial loading comparison with Levy, Ref. [2].

Fig. 4. Buckling coefficient, K, for uniaxial loading comparison with Wittrick, Ref. [3].
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Fig. 5. Buckling coefficient, K, for uniaxial loading comparison with EI-Bayoumy, Ref. [51.

Fig. 6. Buckling coefficient, K, for biaxial loading comparison with EI-Bayoumy, Ref. (5].
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In conclusion, this method gives reliable results and is useful because the computer program
developed fits into a mini computer and does not require a great deal of storage and computer
time.

Completely clamped plates occur relatively rarely in engineering structures. However, when
they do occur, for example as thin diaphragms in more rigid structures their buckling behaviour
may be important. Also a comparison of the clamped and simply supported buckling loads for a
plate can give the designer an indication of the benefit he is likely to gain by increasing edge
fixity.
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